Proliferation of Human Tumor Cells in Vitro and in Vivo BN80927 : A Novel Homocamptothecin That Inhibits
نویسندگان
چکیده
BN80927 belongs to a novel family of camptothecin analogs, the homocamptothecins, developed on the concept of topoisomerase I (Topo I) inhibition and characterized by a stable seven-membered -hydroxylactone ring. Preclinical data reported here show that BN80927 retains Topo I poisoning activity in cell-free assay (DNA relaxation) as well as in living cells, in which in vivo complexes of topoisomerase experiments and quantification of DNA-protein-complexes stabilization, have confirmed the higher potency of BN80927 as compared with the Topo I inhibitor SN38. In addition, BN80927 inhibits Topo II-mediated DNA relaxation in vitro but without cleavable-complex stabilization, thus indicating catalytic inhibition. Moreover, a Topo I-altered cell line (KBSTP2), resistant to SN38, remains sensitive to BN80927, suggesting that a part of the antiproliferative effects of BN80927 are mediated by a Topo I-independent pathway. This hypothesis is also supported by in vitro data showing an antiproliferative activity of BN80927 on a model of resistance related to the noncycling state of cells (G0-G1 synchronized). In cell growth assays, BN80927 is a very potent antiproliferative agent as shown by IC50 values consistently lower than those of SN38 in tumor cell lines as well as in their related drug-resistant lines. BN80927 shows high efficiency in vivo in tumor xenograft studies using human androgen-independent prostate tumors PC3 and DU145. Altogether, these data strongly support the clinical development of BN80927.
منابع مشابه
BN80927: a novel homocamptothecin that inhibits proliferation of human tumor cells in vitro and in vivo.
BN80927 belongs to a novel family of camptothecin analogs, the homocamptothecins, developed on the concept of topoisomerase I (Topo I) inhibition and characterized by a stable seven-membered beta-hydroxylactone ring. Preclinical data reported here show that BN80927 retains Topo I poisoning activity in cell-free assay (DNA relaxation) as well as in living cells, in which in vivo complexes of top...
متن کاملLong non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway
Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...
متن کاملSupernatant Metabolites from Halophilic Archaea to Reduce Tumorigenesis in Prostate Cancer In-vitro and In-vivo
Halophilic archaea are known as the novel producers of natural products and their supernatant metabolites could have cytotoxic effects on cancer cells. In the present study, we screened the anticancer potential of supernatant metabolites from eight native haloarchaeal strains obtained from a culture collection in Iran. Five human cancer cell lines including breast, lung, prostate and also human...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملSupernatant Metabolites from Halophilic Archaea to Reduce Tumorigenesis in Prostate Cancer In-vitro and In-vivo
Halophilic archaea are known as the novel producers of natural products and their supernatant metabolites could have cytotoxic effects on cancer cells. In the present study, we screened the anticancer potential of supernatant metabolites from eight native haloarchaeal strains obtained from a culture collection in Iran. Five human cancer cell lines including breast, lung, prostate and also human...
متن کامل